Spoligotype-based comparative population structure analysis of multidrug-resistant and isoniazid-monoresistant Mycobacterium tuberculosis complex clinical isolates in Poland.
نویسندگان
چکیده
The spoligotyping-based population structure of multidrug-resistant (MDR) Mycobacterium tuberculosis strains isolated in Poland (n = 46), representing all culture-positive MDR tuberculosis (MDR-TB) cases, was compared to that of isoniazid (INH)-monoresistant strains (n = 71) isolated in 2004. The latter data set from a previous study (E. Augustynowicz-Kopeć, T. Jagielski, and Z. Zwolska, J. Clin. Microbiol. 2008, 46:4041-4044) represented 87% of all INH-monoresistant strains. The clustering rates and genotypic-diversity indexes for the 2 subpopulations were not significantly different (P = 0.05). The results were entered in the SITVIT2 database to assign specific shared type designations, corresponding genotypic lineages, and geographical distributions and compared to available data from neighboring countries (Germany, n = 704; Czech Republic, n = 530; Sweden, n = 379; Kaliningrad, Russia, n = 90) and strains from previous studies in Poland (n = 317). MDR strains resulted in 27 patterns (20 unique strains within the study and 7 clusters containing 2 to 6 isolates per cluster with a clustering rate of 56.5%) and belonged to the following genotypic lineages: ill-defined T family (28.3%), Haarlem (17.4%), Latin American and Mediterranean (LAM) (13%), Beijing (8.7%), S family (4.35%), and the X clade (2.17%). Comparison of the genetic structure of the MDR strains with that of INH-monoresistant strains showed that a total of 9 patterns were shared by both groups; these represented 1/3 of the MDR strains and 2/3 of the INH-monoresistant strains. Interestingly, 76.1% of the MDR isolates and 71.8% of the INH-resistant isolates yielded spoligotypes that were previously reported from Poland. The observation that nearly half of the spoligotypes identified among both MDR (48.1%) and INH-monoresistant (43.3%) M. tuberculosis isolates were present in Poland's neighboring countries suggested that a significant proportion of MDR and INH-resistant TB cases in Poland were caused by strains actively circulating in Poland or its neighbors. Our results corroborate the leading role of the T and Haarlem genotypes in the epidemiology of drug-resistant TB in Poland. Nevertheless, the LAM and Beijing family strains that infected, correspondingly, 13% and 9% of patients with MDR-TB were absent among the strains from patients with INH-monoresistant TB, suggesting that a proportion of MDR-TB cases in Poland are due to ongoing transmission of MDR clones exhibiting specific genotypes. Study of the population genetic relationships between MDR and INH-monoresistant strains by drawing minimum spanning trees showed that ill-defined T1 sublineage strains (1/3 of all INH-monoresistant strains), represented by its prototype, SIT53, constituted the central node of the tree, followed by strains belonging to the well-defined H3, H1, and S subgroups. However, the MDR group, in addition, contained LAM (n = 6) and Beijing (n = 4) lineage isolates. With the exception of the 4 Beijing lineage strains in the latter group and a single orphan isolate in the INH-monoresistant group, none of the remaining 112/117 isolates belonged to principal genetic group 1 (PGG1) in our study. Given the high rate of clustering and the near absence of immigrants in the study, the persistence of MDR-TB in Poland seems to result from active transmission of MDR strains within the autochthonous population, the bulk of it caused by evolutionarily recent tubercle bacilli.
منابع مشابه
Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis.
The molecular basis for isoniazid resistance in Mycobacterium tuberculosis is complex. Putative isoniazid resistance mutations have been identified in katG, ahpC, inhA, kasA, and ndh. However, small sample sizes and related potential biases in sample selection have precluded the development of statistically valid and significant population genetic analyses of clinical isoniazid resistance. We p...
متن کاملA two-step strategy for molecular typing of multidrug-resistant Mycobacterium tuberculosis clinical isolates from Poland.
Tuberculosis (TB) continues to be one of the most challenging public health problems in the world. An important contributor to the global burden of the disease is the emergence and spread of drug-resistant and particularly multidrug-resistant Mycobacterium tuberculosis strains (MDR), defined as being resistant to at least isoniazid and rifampicin. In recent years, the introduction of different ...
متن کاملCharacterization of Mycobacterium tuberculosis complex isolates from the cerebrospinal fluid of meningitis patients at six fever hospitals in Egypt.
Mycobacterium tuberculosis complex isolates from cerebrospinal fluid of 67 meningitis patients were obtained from six fever hospitals in Egypt. One M. bovis and 66 M. tuberculosis isolates were identified by PCR-restriction fragment length polymorphism (RFLP) analysis of oxyR. Among the M. tuberculosis isolates, 53 unique strain types (with 3 to 16 copies of IS6110) were found by RFLP analyses....
متن کاملRapid genotypic assays to identify drug-resistant Mycobacterium tuberculosis in South Africa.
OBJECTIVES Molecular assays to detect drug resistance in Mycobacterium tuberculosis are more rapid than standard drug susceptibility testing. To evaluate the efficacy of such assays in this setting, the GenoType MTBDRplus assay (HAIN Lifescience) and multiplex allele-specific PCR assays were carried out. METHODS The GenoType MTBDRplus assay was evaluated for the detection of rifampicin and is...
متن کاملMolecular analysis of isoniazid-resistant Mycobacterium tuberculosis isolates from England and Wales reveals the phylogenetic significance of the ahpC -46A polymorphism.
The present study investigated the prevalence and diagnostic potential of the most commonly reported mutations associated with isoniazid resistance, katG 315Thr, katG 315Asn, inhA -15T, inhA -8A, and the oxyR-ahpC intergenic region, in a population sample of 202 isoniazid-resistant Mycobacterium tuberculosis isolates and 176 randomly selected fully sensitive isolates from England and Wales iden...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of clinical microbiology
دوره 48 11 شماره
صفحات -
تاریخ انتشار 2010